
IMPLEMENTATION NOTES ON bdes(1)

Matt Bishop

Technical Report PCS-TR91-158

Implementation Notes on bdes(1)

Matt Bishop

Department of Mathematics and Computer Science

Dartmouth College

Hanover, NH 03755

ABSTRACT

This note describes the implementation of bdes, the file encryption program being

distributed in the 4.4 release of the Berkeley Software Distribution. It implements

all modes of the Data Encryption Standard program.

1. Introduction

The Data Encryption Standard is a standard endorsed by the federal government. It is con-

siderably stronger than the algorithm used by the UNIX TM crypgl) program, and therefore is a more

suitable candidate for protecting information, especially information contained in ASCII files. The

program bales(l) implements the DES and all of its modes, including the two authentication modes.

Because others may wish to write software compatible with this program, this note presents

the layout of the encrypted files produced by bdes as well as internal details relevant to the imple-

mentation. Whercever possible and appropriate, the description of the des(l) program given in [4]

has been followed; thus, bdes is completely compatible with that program. However, bdes also of.

fers several extensions to des that are not compatible, and these will be explicitly pointed out.

In this note, strings typed as shown will be in Courier Roman font, and strings to be

chosen by the user will be in Courier Oblique font. The space character (ASCII <SP>, octal

40, decimal 32, hex 20) will be represented as 'T' and the newline character (ASCII <NL>, octal 12,

decimal 10, hex a) as ",a". Because it is often more convenient to represent arbitrary characters as

a sequence of hexadecimal digits, that representation will often be used; these digits will be in

Courior Bold font with spaces often inserted for readability.

2. Overview and Use

Bdes is an implementation of the Data Encryption Standard. It implements the Data En-

cryption Standard algorithm in software, and enables the user to encrypt data using any of the four

This work is based on work funded by grant NAG2-680 from the National Aeronautics and Space Adminisuafion to

Dartmouth College.

UNIX is a Registered Trademark of AT&T Bell Laboratories.

Page 1 of 10

modesof operation of the DES (Electronic Code Book, Cipher Block Chaining, k-bit Cipher Feed

Back, and k-bit Output Feed Back) as well as the Alternate k-bit Cipher Feed Back mode. Further,

bdes supports message authentication code generation based on both the Cipher Block Chaining

mode and the k-bit Cipher Feed Back mode.

By default, bdes encrypts an input file using Cipher Block Chaining mode, and is invoked

as a filter. The key may be specified either on the command line or may be typed to the prompt. So,

if the input file input file contains the message

altestlmessage.l

then the following command encrypts it using the key abcdefgh:

bdes abcdefgh < inputfile > outputfile

Now outputfile contains

16 0e eb af 68 a0 dO 19 fl a2 9b 31 8a 0d 01 c3

Other modes are specified using command-line options, as is control of the way the key is

interpreted. The next sections contain several examples, and the Appendix has the manual page.

3. Keys and Parity

The key consists of 64 bits, and may be presented in any of hex, binary, or as a string of

ASCII characters. If the key is given in hex or binary, it is used as is with no changes. However, if

the key is given in ASCII, a delicate problem arises: by convention, the parity bit is usually set to 0.

This high-order bit is generally ignored by applications; but the DES does not do so. Instead, it dis-

cards the low-order bit, effectively reducing the size of the space of possible keys from 256 to 248 .

To preserve the size of the key space, the value of the parity bit must be related to the value

in the low-order bit, so the program sets the high-order bit to make each character in the key be of

odd parity. (Note that the initial value of the parity bit is notused in this computation.) For example,

if the key is abcdefgh, the actual key bits used are determined as follows:

ASCII key a b c d e f g h

ASCn key bits(hex) 61 62 63 64 65 66 67 68

parity odd odd even odd even even odd odd

key bits used (hex) 61 62 e3 64 @5 e6 67 68

This convention (as opposed to requiring even parity, or simply copying the low-order bit

to the high-order bi0 was chosen to provide compatibility with the encryption program des distrib-

Page 2 of 10

uted by Sun Microsystems, Inc. [4]. Whether the key is entered on the command Line or on the key-

board, by default it is processed into the same key schedule generated by Sun's des, so fdes

encrypted on a Sun can be dccrypted using bdes (and vice versa).

If the user does not wish to use the Sun convention, the option -p will disable the parity bit

changing; with it, the parity bit is that of the character typed. This is useful when the key is a known

ASCH string and the file was encrypted on a system which does not alter parity bits.

A key may be represented as a bit vector, rather than an ASCII string, in one of two ways. It

may be represented as a string of up to 16 hexadecimal digits; if fewer than 16 are #oven, the key

is right filled with 0 bits. Or, it may be represented as a string of up to 64 binary digits, and again

if fewer than 64 are #oven, the key is fight-filled with 0 bits. Bit vector keys must be #oven on the

command line, and must begin with the characters 0x or 0X (for hexadecimal) or 0b or 0B (for

binary). For example, all of the following strings generate the same key schedule:

ASCII key abcde fgh

hexadecimal key Ox6162e364e5e66768

binary key ObOllO000101100010111000110110100011100101111000-

II00110011101101000

Note that giving the key on the command line as 0 x 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 will not reset

the parity bits, because it is interpreted as a sequence of hex digits, not ASCII characters. The dif-

ference in interpretation is that here the user can specify all bits of the key exactly, whereas (on

most terminals) it is not possible to control how the parity bit of ASCII characters is set. On some

systems, it is possible to use a "Meta" key to set the parity bit for an ASCII character, should this

be the case and the user desire bdes not to reset the parity bit, the option -p will force the parity bit

to be used as typed.

4. Encryption Output Representation

All modes of the DES output ciphertext in blocks; the size of the block is 64 bits (8 bytes)

for ECB and CBC modes, and k bits for the k-bit CFB and OFB modes, and there are as many out-

put blocks as input blocks. However, as the length of the input is usually not a multiple of the block

size, some padding is necessary; but as padding must be done by appending characters, these char-

acters must be distinguished from the input characters somehow. The mechanism used is that the

last character of the (decrypted) last block is the (integer) number of characters from the input in

the last block.

Page 3 of 10

For example, suppose inputfi le contains "Thi s|i s|a|t est-J",and it is encrypted in

CBC mode using the key "abcde f#@" and the initialization vector OxO; the command is

bdes abcdef#@ < inputfile > outputfile

as CBC is the default encryption mode and OxO the default initialization vector:.

text T h i s I i s I a | t e s t -]

hex 54 68 69 73 20 69 73 20 61 20 74 65 73 74 0a

input 54 68 69 73 20 69 73 20 61 20 74 65 73 74 0a 07

output a5 5f 81 53 51 98 47 02 db 5a c5 fe 50 3d 40 ce

Notice that the text is 15 characters long, so there am 7 bytes following the last full block.

Bdes pads this to a full block by appending one byte containing the ASCII character with numeric

value 7 (the ASCII character <.BEL>). The result is then encrypted.

As another example, suppose inpuCfi2e contains "test", and it is encrypted in ECB

mode using the key "abcde f # @"; the command is

bdes -e abcdef#@ < inputfile > outputfile

because the option-e signifiesECB mode:

text

hex

input

output

t e s t

74 65 73 74

74 65 73 74 00 00 00 04

0d 8a 6e 57 9c 8f 27 5d

_nall_ifthelengthoftherncssageisindeedamultipleoftheblocksize, anex_ablockof

all 0 bits is added. Suppose inputfile contains "test.J", and it is encrypted in 40-bit CFB

mode using the key "abcdef#@" and the initialization vector 0x0123456789abcdef; the

command is

bdes -f 40 -v 0x0123456789abcdef abcdef#@ < inputfile > outputfile

because the option -f 40 signifies 40-bit CFB mode, and -v 0 x012 3 4 5 6 6 7 8 9 abcde f sets the

initialization vector.

00 00 00 00

3d b3 f5 3c

text t e s t d

hex 74 65 73 74 0a

input 74 65 73 74 0a 00

output e2 c2 69 a4 5b 3c

Page 4 of 10

Note here the block size is 40 bits (5 bytes), not 64 bits (8 bytes).

This technique allows complete compatibility with Sun's des program. In Sun's implemen-

tation, padding is done with random bytes rather than bytes containing all zero bits. Cryptograph-

ically, this makes no difference, as the DES is a sufficiently good random cipher to obscure the

input (see for example [2], Chapter 6), and known plaintext attacks are very difficult [1].

5. Differences Between the Standard CFB and OFB Modes and bdes

The UNIX operating system treats all files as streams of 8-bit bytes. In order to implement

the CFB and OFB modes properly, it would be necessary to read k bits from the file, where k is an

integer between 1 and 64 inclusive. However, this would require considerable buffering and be

quite inefficient and prohibitively slow. For these reasons, the current implementation of bdes re-

quires that k be a multiple of 8, so that an integral number of bytes will always be read from the

file. Other than this change, this mode is implemented as described in [3].

A similar observation holds for the alternate CFB mode described in [3]. Here, only the low

7 bits of each byte are significant, and hence the parameter k is an integer from 1 to 56 inclusive;

bdes requires k to be a multiple of 7. The high-order bit is retained for encryption and decryption,

but output (whether from encryption or decryption) always has the high-order bit set to zero.

6. Message Authentication Code Modes

The Data Encryption Standard provides two modes of authentication, each providing be-

tween 1 and 64 bits of authentication data. In both cases an n-bit message authentication code

(MAC) is generated, where 1 < n _ 64. The first is based on the CBC encryption mode, and the

second on CFB mode. Both work the same.

First, the file is padded to a multiple of the block size by appending enough zero bits. It is

thenencrypted using the standardCBC (orCFB) algorithm,but allencrypted textisdiscardedex-

ceptforthe lastblock.The n leadingbitsof the lastblock areused as theMAC. Note thatthe block

sizeconstrainsthe number of bitsavailableas theMAC.

The implementation allows the user to specifythatthe MAC isto be computed in either

CBC or CFB mode, and the usercan specifyany number of bitsfrom I to 64 inclusive.However,

because theUNIX operatingsystem can only outputbitsinmultiplesof 8,ifthe number of bitsof

MAC isnot a multipleof 8,the MAC willbe right-paddedwith theminimum number of zero bits

necessarytomake the MAC lengthbe a multipleof 8.However, note thatas thestandard ([3],Ap-

Page 5 of 10

pendixF) requires an incomplete final block be right-padded with zeroes, the technique of forcing

the last octet to contain the number of bytes in the message is not used here.

For example, suppose i np u t £i 2 e contains "This |i slalt e s t A", and a 64-bit MAC is

to be generated using CBC mode, the key "abcde f # @" and the initialization vector 0 x0; the com-

mand is

bdes -m 64 abcdef#@ <

as CBC is the default encryption mode and 0 x 0

input file > outputfile

the defaultinitializationvector.

text T h i s | i s | a | t e s t .J

hex 54 68 69 73 20 69 73 20 61 20 74 65 73 74 0a

input 54 68 69 73 20 69 73 20 61 20 74 65 73 74 Oa

output 43 18 de 74 24 a9 65 dl

O0

Notice that the text is 15 characters long, so there are 7 bytes foUowing the last full block.

Bdes pads this to a full block by appending a zero-filled byte. The result is then encrypted and the

last block of output is used as the MAC.

As another example, suppose we used the same text, and wanted a 36-bit MAC to be gen-

erated using 40-bit CFB mode, the key "abcdef#@" and the initialization vector

0x0123456789abcdef; the command is

bdes -m 36 -f 40 -v 0x0123456789abcdef < input file > outputfile

where -m 36 isthe optiontogeneratea 36-bitMAC, -f 40 indicates40-bitCFB istobe used, and

-v 0x123456789abcdef sets the initialization vector. Note that, as the key is not given on the com-

mand line, the user will be prompted for it; only ASCII keys can be obtained in this way. It gives:

_xt T h i s | i s | a | t e s t A

hex 54 68 69 73 20 69 73 20 61 20 74 65 73 74 0a

input 54 68 69 73 20 69 73 20 61 20 74 65 73 74 Oa

output 2b 18 68 2d 60

Note that the MAC is padded on the right by four zero bits to produce five characters that

can be output.

7. Differences Between bdes and Sun's DES Implementation

The program bdes is designed to be completely compatible with Sun Microsystems, Inc.'s

implementation of the Data Encryption Standard, called des and described in [4]. Thus, files en-

Page 6 of 10

crypted using des can be decrypted using bdes, and vice versa, provided modes common to both

are used. However, the user interfaces are completely different (and incompatible); as the manual

page to bdes is in the appendix, these differences will not be elaborated upon further.

Sun's des supports the use of special-purpose hardware to encrypt and decrypt. Although

bdes does not directly support the use of such hardware, it uses the library routine encrypt(3),

which may. Hardware support was not included directly to support as large a number of platforms

as possible with installers needing to know as little about the hardware as possible.

Sun's des supports only the CBC and ECB encryption modes; bdes supports all modes de-

scribed in [3] (although CFB and OFB are not completely supported) as well as both CBC-based

and CFB-based MACs.

Although input with length not a multiple of the block size is handled in the same way by

both des and bdes, different values of the padding bytes are used in all but the last byte of the input.

Where bdes puts zero bytes, des puts bytes containing random values. The reason for Sun's doing

so is to prevent a known plaintext attack on the file should an attacker determine that the input's

length were a multiple of the block size. With bdes, the plaintext contents of the last block of input

for such a file is known (a block with all bits zero). With des, the plaintext contents of that block

are not known. CryptanalyticaUy, given the information about the strength of the DES currently

known, it is widely believed that known plaintext attacks are infeasible (see for example [1]) and

so initializing and invoking the pseudorandom number generator seems unnecessary. But this

means that ciphertexts produced from a plaintext by bdes and des will differ in the last block.

References

[1] D. Denning, "The Data Encryption Standard: Fifteen Years of Public Scrutiny," Proceed-

ings of the Sixth Annual Computer Security Applications Conference pp. x-xv (Dec. 1990).

[2] A. Konheim, Cryptography: A Primer, John Wiley and Sons, Inc., New York, NY (1981).

[3] DES Modes of Operation, Federal Information Processing Standards Publication 8 I, Na-

tional Bureau of Standards, U.S. Department of Commerce, Washington, DC (Dec. 1980).

[4] UNIX User's Manual, Sun Microsystems Inc., Mountain View, CA (Mar. 1988).

Appendix. The UNIX System Manual Page for bdes

Page 7 of I0

NAME

bdes- encrypt/decrypt using the Data Encryption Standard

SYNOPSIS

bdes[options][key]

DESCRIPTION

Bdes reads from the standard input and writes on the standard output. It implements all DES
modes of operation described in FIPS PUB 8 1 including alternative cipher feedback mode

and both authentication modes. All modes but the electronic code book mode require an

initialization vector, if none is supplied, the zero vector is used. To protect the key and ini-

tialization vector from being read by ps(1), bdes hides its arguments on entry. If no key is
given, one is requested from the controlling terminal if that can be opened, or from the stan-

dard input if not.

The key and initialization vector are taken as sequences of ASCII characters which are then

mapped into their bit representations. If either begins with '0x' or '0X', that one is taken as
a sequence of hexadecimal digits indicating the bit pattern; if either begins with '0b' or

'0B', that one is taken as a sequence of binary digits indicating the bit pattern. In either case,

only the leading 64 bits of the key or initialization vector are used, and if fewer than 64 bits

are provided, enough 0 bits are appended to pad the key to 64 bits. Note that if the key is

not entered on the command line, it is assumed to be ASCII. This is due to limits of the pass-

word reading function gerpass(3), which allows at most 8 characters to be entered.

According to the DES standard, the low-order bit of each character in the key string is de-

leted. Since most ASCII representations set the high-order bit to 0, simply deleting the low-
order bit effectively reduces the size of the key space from 256 to 248 keys. To prevent this,

the high-order bit must be a function depending in part upon the low-order bit; so, the high-

order bit is set to whatever value gives odd parity. This preserves the key space size. Note

this resetting of the parity bit is not done if the key is given in binary or hex.

By default, the standard input is encrypted using cipher block chaining mode and is written

to the standard output. Using the same key for encryption and decryption preserves plain-
text, so

bdes key < plaintext Ibdes -i key

is a very expensive equivalent of cat(1).

Options are:

--a The key and initialization vector strings are to be taken as ASCii suppressing the spe-

cial interpretation given to leading '0x', '0X', '0b', and '0B' characters. Note this

flag applies to both the key and initialization vector.

-..e Use cipher block chaining mode. This is the default.

-e Use electronic code book mode.

-f b Use b-bit cipher feedback mode. Currently b must be a multiple of 8 between 8 and

64 inclusive (this does not conform to the standard CFB mode specification).

Page 8 of 10

-F b Use b-bitalternativecipherfeedback mode. Currentlyb must be a multipleof 7 be-

tween 7 and 56 inclusive(thisdoes not conform to thealternativeCFB mode spec-

ification).

-i invert(decrypt)theinput.

-mb Compute a message authenticationcode (MAC) of b bitson the input,b must be

between I and 64 inclusive;ifb isnot a multipleof 8,enough 0 bitswillbe added

topad theMAC lengthtothenearestmultipleof 8.Only the MAC isoutput.MACs

are only availablein cipherblock chaining mode or incipherfeedback mode.

--ob Use b-bitoutputfeedback mode. Currentlyb must be a multipleof 8 between 8 and

64 inclusive(thisdoes not conform tothe OFB mode specification).

-p Disablethe resettingof theparitybit.This flagforcestheparitybitof the key to be

used as typed,ratherthanmaking each characterbe of odd parity.Itisused only if

thekey isgiven in ASCII.

-v v Set theinitializationvectortov;thevectorisinterpretedin thesame way as thekey.

The vectorisignored inelectroniccodebook mode.

The DES isconsidered a very strongcryptosystem,and other than tablelookup attacks,

key searchattacks,and Hellman's time-memory tmdeoff (allof which ate very expensive

and time-consuming), no cryptanalyticmethods for breaking the DES are known in the

open literature.No doubt thechoiceof keys and key securityarethemost vulnerableaspect
of bdes.

IMPLEMENTATION NOTES

For implementors wishing to write software compatible with this program, the following

notes are provided. This software is completely compatible with the implementation of the

data encryption standard distributed by Sun Microsystems, Inc.

In the ECB and CBC modes, plaintext is encrypted in units of 64 bits (8 bytes, also called

a block). To ensure that the plaintext file is encrypted correctly, bdes will (internally) ap-

pend from 1 to 8 bytes, the last byte containing an integer stating how many bytes of that

final block are from the plaintext file, and encrypt the resulting block. Hence, when decrypt-

ing, the last block may contain from 0 to 7 characters present in the plaintext file, and the

last byte tells how many. Note that if during decryption the last byte of the file does not con-

tain an integer between 0 and 7, either the file has been corrupted or an incorrect key has

been given. A similar mechanism is used for the OFB and CFB modes, except that those

simply re,quire the length of the input to be a multiple of the mode size, and the final byte

contains an integer between 0 and one less than the number of bytes being used as the mode.

(This was another reason that the mode size must be a multiple of 8 for those modes.)

Unlike Sun's implementation, unused bytes of that last block are not filled with random

data, but instead contain what was in those byte positions in the preceding block. This is

quicker and more portable, and does not weaken the encryption significantly (and even
then, only in a few cases).

If the key is entered in ASCII, the parity bits of the key characters are set so that each key

character is of odd parity. Unlike Sun's implementation, it is possible to enter binary or

Page 9 of 10

hexadecimal keys on the command line, and if this is done, the parity bits arc not reset. This

allows resting using arbitrary bit patterns as keys.

The Sun implementation always uses an initialization vector of 0 (that is, all zeroes). By

default,bdes does too,but thismay be changed from the command line.

FILES

/dev/tty controllingterminalfortyped key

SEE ALSO

crypt(I), crypt(3)

Data Encryption Standard, Federal Information Processing Standard #46, National Bureau

of Standards, U.S. Department of Commerce, Washington DC (Jan. 1977).

DES Modes of Operation, Federal Information Processing Standard #81, National Bureau

of Standards, U.S. Department of Commerce, Washington DC (Dec. 1980).

Dorothy Denning, Cryptography and Data Security, Addison-Wesley Publishing Co.,

Reading, MA ©1982.

Matt Bishop, "Implementation Notes on bdes(1)', Technical Report PCS-TR-91-158, De-

partment of Mathematics and Computer Science, Dartmouth College, Hanover, NH

(Apr. 1991).

BUGS

There is a controversy raging over whether the DES will still be secure in a few years. The

advent of special-purpose hardware could reduce the cost of any of the methods of attack

named above so that they are no longer computationally infeasible.

As the key or key schedule is kept in memory throughout the run of this program, the cn-

cryption can be compromised if memory is readable.

There is no warranty of merchantability nor any warranty of fimess for a particular purpose

nor any other warranty, either express or implied, as to the accuracy of the enclosed mate-

rials or as to their suitability for any particular purpose.

Accordingly, the user assumes full responsibility for their use. Further, the author assumes

no obligation to furnish any assistance of any kind whatsoever, or to furnish any additional
information or documentation.

AUTHOR

Matt Bishop, Department of Mathematics and Computer Science, Bradley Hail, Dart-

mouth College, Hanover, NH 03755

Electronic mail addresses:

Internet: Matt.Bishop@dartmouth.edu

UUCP: deevaxtdartvaxt Matt.Bishop

Page 10 of 10

